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Introduction
Many years ago, when I was first learning to program though BASIC and Batch files, I had a rather naïve 
dream. I knew that I could use BASCOM to turn those .bas files into .exe's, and later on when I learned C 
and C++ they produced executables as their end result. However when I opened them in Notepad they 
were a mess of random characters that looked nothing like the source files. In my quest to go further and 
further low-level, I learned x86 Assembly and assembled a few small tests, but I still couldn't make head nor 
tail of the resulting file formats.

My eventual dream was to be able to 'write' an EXE, in raw hex. No compilation, assembling or linking 
needed. However, no amount of Googling could give me anything on the matter, probably because I didn't 
know what to search for. Whenever I searched for “machine code tutorial” it came up with dated stuff for 
ancient computers, and not Windows. I had yet to learn it's not as simple as just one “machine code” for all 
processors. It was when I stumbled across Iczelion's Win32 assembly website 
(http://win32assembly.online.fr/tutorials.html) that everything clicked and began to make more sense. I 
had to grasp the basics of the C Win32 API first, but once I had made myself comfortable with that, and 
done a few Google searches with the correct keywords, I achieved my goal :)

The things that made this whole process harder and slower were probably my age when I first had the idea 
(around 9 or 10 years old!!), my lack of experience as I was still a n00b to programming for several years, 
and the fact that I was almost completely self-taught. Google has been my best friend throughout, but 
despite this it's really difficult to learn completely by yourself. One of my greatest mistakes was neglecting 
to just ask people on forums as a last resort – I think I felt I was cheating in some way by asking for specific 
help, but in retrospect I was pretty foolish not to.

Anyway, so the purpose of this text I'm writing is to explain, by example, how to write executable files in 
hex. 

Why bother?
Exactly! Trust me, once you've done it you don't want to do it again, unless of course you want to write a 
tutorial on it. Assembly's the lowest level people tend to go for a reason. However it's still good to have an 
understanding of the formats, which are critical in reverse-engineering and other hacker-ish stuff like that. 
It's also a no-brainer that if you're working on a compiler / assembler of your own, you need to thoroughly 
understand the format of the end result :P

I personally thought it as a challenge. If I could understand this, which is the lowest software level I can 
think of, I'd be satisfied.

Prerequisites
Firstly I will assume a prior knowledge and understanding of at least one programming language, since this 
is a programming text after all. Since this text is on x86 machine language, you should also know basic x86 
assembly, both 16-bit and 32-bit. 
For 16-bit assembly, A Brief x86 Assembler Tutorial (http://www.skynet.ie/~darkstar/assembler/) is a great 
introduction. For 32-bit and 16-bit, I found The Art of Assembly Language Programming 
(http://maven.smith.edu/~thiebaut/ArtOfAssembly/artofasm.html) to be an incredibly detailed 
introduction to the subject (the title of this text is a nod to it :D). I also found the x86 Disassembly Wikibook 
(http://en.wikibooks.org/wiki/X86_Disassembly) helpful for understanding the function calling mechanism 
and the stack. A  basic knowledge of the Win32 API and how it's used in Assembly is also needed, and 
Iczelion's site above is invaluable for this. The emphasis here is on 32-bit, Windows assembly but the 16-bit 
knowledge is still useful for understanding of some older file formats. An understanding of the hexadecimal 
and binary number systems (including two's complement representation) is also critical, in addition to basic 
memory concepts such as addresses, address space, and the like.

http://win32assembly.online.fr/tutorials.html
http://en.wikibooks.org/wiki/X86_Disassembly
http://maven.smith.edu/~thiebaut/ArtOfAssembly/artofasm.html
http://www.skynet.ie/~darkstar/assembler/


Overview
The first thing to know here is that there's no such thing as the “.exe” file format. Under Windows, this 
extension covers at least three different formats used for current versions of Windows and to maintain 
backwards compatibility with old programs.

When I first 'tried' to write an EXE by hand, I had no knowledge of assembly and only basic knowledge of 
programming in general. So my first attempt involved creating a blank text file and typing in “Hello, World!” 
in binary. I saved it as a .exe and was confused when my program didn't run at all, let alone display “Hello, 
World!” to standard output...!
Of course, this was because I had no knowledge of the file formats used. Later on, with knowledge of 
assembly, I thought .exe's consisted of machine instructions from start to finish. This isn't quite the case 
for .exe's, but there is another lesser-seen extension that is exactly this: .COM.

COM files are probably the simplest executable to understand. A relic from DOS, they are 16-bit, have a 
maximum size of 65536 bytes, and do not use segmentation. They're loaded at address 0x100 in DOS' 
memory, and execution begins right there, at the start of the program.

COM files will be the first to be covered in more detail because of their simplicity. However we also have 
.exe files to deal with. As mentioned, exe's cover three different 'sub-formats': MZ, NE, and PE.

An MZ, or 'DOS' executable file, starts with the letters “MZ” and is 16-bit. Good old BASCOM produced 
these. It is comprised of a 'header' at the beginning and then mainly instructions or data.

NE stands for New Executable, and is a really rare type that was used for early 16-bit versions of Windows. 
Unfortunately I don't understand this format fully and I don't really see it worth understanding, since so few 
programs use it (Zeek the Geek FTW!), so NE's will be skipped in this text. Some documentation is available 
on the internet for it.

Now, despite the three previous formats being for DOS or 16-bit Windows, 32-bit Windows maintains 
backwards compatibility with them and can still run them. This is why I could use ancient BASIC interpreters 
from DOS to help me learn BASIC, on Windows XP :)

Lastly, we have PE, or “Portable Executable”. This is the format used by the current modern, 32-bit versions 
of Windows and is a bit more involved than the MZ executable. It consists of a mini MZ executable at the 
beginning, a mass of headers, a table, and then code/data.

So, without further ado, let's have a look at the first executable format in the list.



Chapter 1: COM files
To provide a starting point, suppose we have the typical “Hello World” assembly program to convert into 
a .COM file:

mov ah,09
mov dx,OFFSET msg
int 21h ;display message
mov ah,4C
mov al,00
int 21h ;exit
msg db “Hello, World!$”

Since a COM file is just this but in numerical, instruction format, all one needs to do is convert.

ASM to machine code conversion
Unless you know all of the CPU's instructions by heart, you'll need a reference. I use MASM32's Opcodes list 
mainly but I also sometimes use http://ref.x86asm.net/coder32.html. I will refer to MASM's reference pages 
here but the above website uses similar notation.

The only things the processor can understand are numbers. These numbers, when interpreted and executed 
by the CPU as instructions, are known as machine code or machine language. Different processors have 
different machine languages, but fortunately Intel's are almost fully backward compatible with each other. 
An x86 machine instruction covers both the operation (eg mov) and the operand(s) (eg ah and 09). Each 
assembly language instruction corresponds to at least one numerical machine instruction. I say 'at least one' 
because some instructions that look like the same operation (such as push 4Ch and push ax) actually 
have different numerical codes, as will be seen...

To be able to use these resources you need to know the general format for 16-bit instructions. This is:

 

The first box is called the Opcode byte. 'Opcode' is short for 'operation code' and gives a general idea of 
what the operation is (eg add, mov, push) and the type of operands it accepts. The [opcode] field is 6 bits 
long and represents the actual operation to be performed. [D] is a single bit that specifies the direction of 
the operands; if it is 0, the register represented by the [reg] field of the mod r/m byte is used as the 
source, and if it is 1, [reg] is used as the destination. [W] is another single bit that determines the width 
of the operands; 0 means they are 8 bits (1 byte) wide and 1 means they are 16 bits (1 word / 2 bytes) 
wide.

The mod r/m byte determines the specific operands of the instruction. It's not always present in all 
instructions, particularly those that have an immediate operand (will be covered shortly).

The [reg] field represents a register as one of the operands (as mentioned, it can be either the source or 
destination depending on the [D] bit). It can be either 8-bit, if [W] is 0, or 16-bit if [W] is 1. These are the 
values with their corresponding registers:

[opcode][D][W] [mod][reg][r/m] [displacement] [immediate]

Opcode byte Mod r/m byte Immed byte/wordDisplacement byte/word

http://ref.x86asm.net/coder32.html


[reg] [W]=0 [W]=1
000   al   ax
001   cl   cx
010   dl   dx
011   bl   bx
100   ah   sp
101   ch   bp
110   dh   si
111   bh   di

[mod] ('mode') is a 2-bit field that can affect how the [r/m] field is treated. [r/m] is 3 bits and can 
represent either a register or a memory address. The effects of [mod] are:

00 - If [r/m] is 110, treat [displacement] as the address. If not, there is no [displacement].
01 - [displacement] is 8 bits, but sign-extend it to 16 bits
10 - [displacement] is 16 bits
11 - treat [r/m] as a second [reg] field

And for [r/m] treated as a memory address:

000 – bx + si + [displacement]
001 – bx + di + [displacement]
010 – bp + si + [displacement]
011 – bp + di + [displacement]
100 – si + [displacement]
101 – di + [displacement]
110 – bp + [displacement] unless [mod] = 00, as mentioned
111 – bx + [displacement]

A 'displacement' is, as can be seen, a (signed) value that is added to registers which 'displaces' it by some 
amount. This would be used in an instruction like add ax,[bp + 2]; in this case, 2 would be the 
displacement. Of course, displacements aren't always needed; this is when you'd use a [mod] of 00 to 
take it out of the picture. This would work for all registers except bp on its own, because of the exceptional 
case where the displacement is treated as the address. Instead for this you'd use a [mod] of 11 to treat 
[r/m] as a second register, and use 101 for this field (provided [W] is 1!).

Note that if [mod] is 11, you can forget the above list for [r/m] and use the [reg] list instead. This 
enables register-register operations rather than just register-memory operations.

As a quick reference, the following table shows the combined effects of [mod] and [r/m] on the resulting 
operand:

[r/m]-->
[mod] V

000 001 010 011 100 101 110 111

00 [bx+si] [bx+di] [bp+si] [bp+di] [si] [di] [disp16] [bx]

01 [bx+si+
disp8 
(SX)]

[bx+di+
disp8 
(SX)]

[bp+si+
disp8
(SX)]

[bp+di+
disp8 
(SX)]

[si+
disp8 
(SX)]

[di+
disp8 
(SX)]

[bp+
disp8
(SX)]

[bx+
disp8 
(SX)]

10 [bx+si+
disp16]

[bx+di+
disp16]

[bp+si+
disp16]

[bp+di+
disp16]

[si+
disp16]

[di+
disp16]

[bp+
disp16]

[bx+disp
16]

11 ax cx dx bx sp bp si di



An [immediate] is a value that is treated as-is rather than a memory address or a displacement. For 
example, in mov cl,03 the value 03 is an immediate. Most instructions taking immediates have custom 
opcode bytes and lack mod r/m bytes, since the operation is one-way (you can't switch the above 
instruction around since storing cl in 03 makes no sense).

Whew! I don't know whether that was hard to follow, but it was certainly hard to explain. If it's not crystal 
clear then hopefully the following examples will help. They will also discuss some of the conventions and 
notation used in instruction references.

Examples
1) mov cl,03
Let's start off with a really basic instruction: mov cl,03. The MASM page for mov lists quite a few 
different opcode bytes corresponding to different varieties of the instruction. Since this involves an 8-bit 
register and an immediate, look for the one that deals with an r8 (8-bit register) and an imm8 (8-bit 
immediate). It says:

“B0+ rb MOV r8,imm8 Move imm8 to r8”

B0 is the base opcode of the instruction. Since the source is an immediate value, there is no mod r/m byte. 
The + rb part means you add the [reg]code for the 8-bit destination register to the base opcode; the 'b' 
stands for Byte, denoting an 8-bit register only ('w' means 'word' = 16 bits). If we look up cl in the [reg] 
list, we find it is 010 (binary 2). So we add 2 to B0, giving B2. This is currently equivalent to: mov cl. All 
we need to do now is supply the 8-bit immediate 03. If you look at the 16-bit instruction format from 
before you'll see that the immediate comes after the displacement and the mod r/m byte. Since we don't 
use the latter two in this instruction, we just need to place it right after the opcode byte, giving a final result  
of:

mov cl,03 = B2 03

2) add ax,bx
Now for a slightly trickier one. This involves two registers so it's going to require a mod r/m byte. The 
documentation for the add instruction, for a r16 and a r/m16, looks like this:

“01 / r ADD r/m16,r16 Add r16 to r/m16”

Remember that we're dealing with two registers here, and because the [r/m] field can represent a 
register, this will also perform the same operation:

“03 / r ADD r16,r/m16 Add r/m16 to r16”

Note that the [D] and [W] bits are used in these opcode bytes! For both of them, [W] is 1, denoting 16-
bit operands. In the first, [D] is 0 denoting [reg] as the source and [r/m] as the destination. In the 
second, [D] is 1 which denotes the opposite way round. So since [reg] and [r/m] can both represent 
registers, either of these instructions will do. So which one do you use? Whichever you prefer, really. This 
redundancy is unfortunately part of many instructions in the x86 architecture.

For simplicity we will choose the first one, 01. Since the [D] bit is 0, the [reg] field denotes the source 
register. Our source register is bx. Looking it up in the [reg] table gives 011 (binary 3). So that's the 
[reg] field sorted. Our destination register is ax, which has a code of 000. This goes in the [r/m] field, 
but to get this interpreted as ax and not something like [bx+si], the [mod] field has to be 11.

So, to summarise, [mod] = 11, [reg] = 011, and [r/m] = 000.
Thus the mod r/m byte is 11011000 in binary, or D8 in hex. Since we don't have a displacement or an 



immediate, our final result is:

add ax,bx = 01 D8

3) push [0ABCDh]
I have chosen this instruction because it makes use of three important things. Here is the documentation 
for the relevant push instruction, taking a r/m16 operand (in this case it's the m16 part as it's a memory 
address):

“FF /6 PUSH r/m16 Push r/m16”

What on earth does the /6 mean? Well, consider this: this instruction takes a r/m16 operand. This will 
require a mod r/m byte, and will take up the [r/m] and use the [mod]bits. However this leaves us with 
an unused [reg] field... since there's only one operand. So the designers decided to use the same opcode 
byte (FF) for different instructions, which are diffrentiated by the [reg] field of the mod r/m byte. The 
/6 (I think it's called an 'opcode extension') denotes this value, so the [reg] field is 110. If you used a 
different value for [reg] you'd probably wind up with a completely different operation; you can verify this 
for yourself if you look at the FF opcode:

“
FF CALL
FF DEC
FF INC
FF JMP
FF PUSH
“

These all share the same opcode, FF, and are differentiated solely by the opcode extension, aka their 
[reg] field. This can be seen in several other opcodes as well.

The second thing it makes use of is, obviously, memory addressing. So far we have our opcode and our 
[reg]. That leaves [mod] and [r/m]. The memory address is given as a 16-bit displacement (0ABCDh), 
so if you consult the mod r/m table from before you'll see that [mod] should be 00 and [r/m] should be 
110. So, our mod r/m byte is 00110110, or 36 hex.

The displacement comes after the mod r/m byte, so all we need to do is append it, leaving a final code of 
FF 36 AB CD, right? WRONG! Well, more like not quite right. The only problem here is that the 
displacement bytes are actually in the wrong order! This is correct: FF 36 CD AB.  The reason for this is 
that the x86 architecture is little-endian; this means that when a multi-byte numerical value (such as ABCD) 
is stored in memory, it is stored least-significant byte (LSB) first. ABCD is a two-byte value, so CD comes first 
and then AB. This is true for larger values too; later on, when we cover 32-bit stuff, values like 00402008 
are actually stored as 08 20 40 00.

So in summary, our final result:

push [0ABCDh] = FF 36 CD AB

Phew! We should be ready to translate that assembly program from before. About time too...



That assembly program from before
Here it is again:

mov ah,09
mov dx,OFFSET msg
int 21h ;display message
mov ah,4C
mov al,00
int 21h ;exit
msg db “Hello, World!$”

Let's tackle them one by one:

mov ah,09: base opcode: B0. It says +r, so B0 + 4 (ah = binary 100, aka 4) = B4
Append 09: B4 09
mov dx,OFFSET msg: this is a bit tricky because we don't actually know what OFFSET msg is till 
we've done everything else! The most we can do at this point is to translate up to here. So the base opcode 
is B8, adding the register code 010 (2) for dx gives BA, and if we represent the currently unknown 
immediate with XX XX: BA XX XX
int 21h: this is really simple, just CD 21
mov ah,4C: here we can just use the code for the first instruction but with a different immediate: 
B4 4C
mov al,00: base opcode = B0, adding 0 gives us... well, B0, and appending 00 gives B0 00
int 21h: same as before, CD 21
It is at this point that we have msg stored as ASCII. Up to this point, we have:

B4 09 BA XX XX CD 21 B4 – 4C B0 00 CD 21

If we count up the bytes taken up so far, we can see msg is at 0xD bytes from the start of the file. We must 
remember that COM programs start at offset 0x100 in (DOS) memory, so the actual address in memory of 
msg is 0x010D. So we can now replace the XX XX with 0D 01 (remember, little-endian) and add in msg 
itself:

B4 09 BA 0D 01 CD 21 B4 – 4C B0 00 CD 21 48 65 6C
6C 6F 2C 20 57 6F 72 6C - 64 21 24

Now, this is the hex code for the program – if you save it as a .COM file using a hex editor or similar (in 
MASM32 just go to Tools->Save hex file as binary) and run, you should see a nice “Hello, World!” program 
flash up for a millisecond. You could always add in a keystroke interrupt, or run it in Command Prompt.

There we go! You've (probably) just written your first program in raw, unadorned hexadecimal. And if you 
think that was long and drawn out, there's a lot worse to come :)



Chapter 2: 'MZ' .exe's
This brings us to our first 'sub-format' of the .exe extension. Unlike .COM files, MZ executables aren't quite 
as simple as instructions and data right from the beginning. Instead there is a 'header' at the beginning, 
containing information on various things like initial values of CS:IP and SS:SP. The header is needed to 
allow programs to take up more than 1 segment in memory, which was not the case in .COM files. 
Unfortunately I don't yet fully understand this format, so the instructions will be simple (pretty much the 
same as the .COM program) and more advanced concepts like relocations won't be covered. Being able to 
write a short MZ executable is needed for the PE executable which will be covered next, as they start off 
with an MZ at the beginning.

The header is as follows:

WORD magic;
WORD lastSize;
WORD nBlocks;
WORD nReloc;
WORD hdrSize;
WORD minAlloc;
WORD maxAlloc;
WORD ss;
WORD sp;
WORD checksum;
WORD ip;
WORD cs;
WORD relocPos;
WORD nOverlay;

Credit to http://www.delorie.com/djgpp/doc/exe/ for the info on the fields.

First and foremost, magic is a magic number that always has a value of 0x5A4D, or as it appears in the 
file, 4D 5A, representing the ASCII letters “MZ”.

lastSize is the number of bytes in the last block of the file. A 'block' is shorthand for 512 (0x200) bytes. 
Obviously if the file is less than a block long, this will just be the size of the file in bytes. A value of 0 means 
the entire last block is used.

nBlocks is the number of (not necessarily full) blocks in the file, with a minimum value of 1. If 
lastSize isn't 0, only lastSize bytes are used in the last block.

nReloc is the number of relocation entries in the file, if any.

hdrSize is the size of the header, in paragraphs. A 'paragraph' is 16 (0x10) bytes.

minAlloc and maxAlloc, respectively, are the minimum and maximum number of paragraphs of 
memory to reserve for the program.

ss and sp are the initial values of the Stack Segment (relative to the segment the program was loaded at) 
and Stack Pointer registers respectively.

checksum is the checksum of the file, unsurprisingly. It should be 0 if the file hasn't been corrupted or 
mangled in some way during transit.

ip and cs are the initial values of the Instruction Pointer and Code Segment (relative to the segment the 
program was loaded at) registers respectively. Use these to select where execution begins.

http://www.delorie.com/djgpp/doc/exe/


relocPos is the file offset of the relocation table, if one exists.

nOverlay is the overlay number of the file. I'm not exactly sure what an overlay number is... but a value 
of 0 seems to work.

To prepare for the PE format next, this MZ program will display a message saying “This program cannot be 
run in DOS mode.” and exit. This is because PE programs are made for 32-bit Windows and will not work on 
DOS, but they still have the same .exe extension. So PE programs all have a MZ 'stub' program at the 
beginning that is runnable by DOS, which typically states that the program needs Windows to run, can't run 
on DOS, or something to that effect.

For this we can use the COM program from before, with the ASCII string at the end modified to represent a 
different message. However, there is another thing we must do: in the COM program the cs and ds 
registers had the same value, which is why we could just supply dx with the offset of the string to use with 
int 21h (int 21h, service 09 uses ds:dx for the string). But cs and ds aren't necessarily the same in 
the MZ executable. So we must set ds manually. Since there are no [reg] codes for cs and ds, we can't 
do a simple mov ds,cs. Instead we push cs to the stack and pop it to ds at the beginning. Because of 
these two extra instructions, and the fact that the program might not be loaded at 0x100 any more, we 
also need to recalculate the offset of msg. So our assembly, and resulting machine code, looks like this:

ASSEMBLY MACHINE
======== =======
push cs 0E
pop ds 1F
mov ah,09 B4 09
mov dx,OFFSET msg BA 0F 00
int 21h CD 21
mov ah,4Ch B4 4C
mov al,00 B0 00
int 21h CD 21
msg db “This program”\ 54 68 69 73 20 70 72 6F 67 72 61
“ cannot be run in DOS mode.$” 6D 20 63 61 6E 6E 6F 74 20 62 65

20 72 75 6E 20 69 6E 20 44 4F 53
20 6D 6F 64 65 2E 24

So, we have our machine code and now we need our header.

magic is going to be easy, just 4D 5A.

lastSize requires the entire file to be completed first, so we mark it with XX XX.

nBlocks will be 1, since there's no way such a small file can be over 512 bytes.

nReloc is 0 since we're not using relocations here.

hdrSize has yet to be determined; for now, mark it XX XX

minAlloc and maxAlloc can both be 0 as our program doesn't need any extra memory.

ss can be 0 and sp can be B8 to give the stack some room.

checksum is obviously going to be 0...

ip and cs are 0 because our program starts at the first instruction.



relocPos is 0 since we don't have a relocation table.

nOverlay is also 0.

This gives us a header of:

4D 5A XX XX 01 00 00 00 – XX XX 00 00 00 00 00 00
B8 00 00 00 00 00 00 00 – 00 00 00 00

We can now fill in the hdrSize field. However  it's not in bytes; it's in paragraphs, but the current size of 
the header is not a multiple of 16! Therefore we need to 'pad' the last four bytes with some value (I chose 
00):

4D 5A XX XX 01 00 00 00 – 02 00 00 00 00 00 00 00
B8 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00

The new bytes have been shown in bold, in addition to the filled-in hdrSize field.

The header's almost finished. All we need to do now is to add in the machine code:

000 :4D 5A XX XX 01 00 00 00 – 02 00 00 00 00 00 00 00
010 :B8 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
020 :0E 1F B4 09 BA 0F 00 CD - 21 B4 4C B0 00 CD 21 54
030 :68 69 73 20 70 72 6F 67 - 72 61 6D 20 63 61 6E 6E
040 :6F 74 20 62 65 20 72 75 - 6E 20 69 6E 20 44 4F 53
050 :20 6D 6F 64 65 2E 24

Now we can fill in the lastSize member – using the file offsets on the left we can see the last byte in the 
file is at offset 0x56, meaning the total number of bytes in the file is 0x57 (since the first byte is at offset 
0). The finished MZ executable hex is, with lastSize in bold:

000 :4D 5A 57 00 01 00 00 00 – 02 00 00 00 00 00 00 00
010 :B8 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
020 :0E 1F B4 09 BA 0F 00 CD - 21 B4 4C B0 00 CD 21 54
030 :68 69 73 20 70 72 6F 67 - 72 61 6D 20 63 61 6E 6E
040 :6F 74 20 62 65 20 72 75 - 6E 20 69 6E 20 44 4F 53
050 :20 6D 6F 64 65 2E 24

If you run the resulting program, you should see the message “This program cannot be run in DOS mode.”.

So far we have been working in 16-bit code and memory with nasty things like segmentation and ancient 
DOS conventions. The PE format is 32-bit (save for the MZ stub at the beginning) and thus uses 32-bit 
instructions. Apart from just having double-length operands, they have a few other differences as will be 
seen...



Chapter 3: The Portable Executable
As with the .COM chapter, we will begin with the assembly code for the program we wish to write. This will  
be in MASM form as it is a 32-bit, Windows assembler:

.386

.model flat,stdcall
option casemap:none
include <\masm32\include\windows.inc>
include <\masm32\include\kernel32.inc>
include <\masm32\include\user32.inc>
includelib <\masm32\lib\kernel32.lib>
includelib <\masm32\lib\user32.lib>

.data
msg db “Hello, World!”,0
msgTitle db “Message”,0

.code
start:

push MB_ICONINFORMATION ; 0x40
push OFFSET msgTitle
push OFFSET msg
push NULL ;0
call MessageBoxA
push 0
call ExitProcess

end start

32-bit machine code
The main difference between 16-bit and 32-bit x86 machine code is that all 16-bit operands are now 32-bit.  
So r/m16 changes to r/m32, imm16 changes to imm32, and so on (this means that the [W] bit denotes 
8-bit or 32-bit values now). This isn't really hard at all to get used to, but one thing to remember is that 
these instructions are, numerically, no different to their 16-bit counterparts. That's right! If you look at the 
MASM opcode reference you'll see that the 16-bit and 32-bit opcodes are exactly the same (pretty much – 
there may be one or two exceptions for instructions not needed in 32-bit protected mode). So how do we 
use 16-bit instructions in 32-bit mode? The short answer is...we don't. In 32-bit protected mode the 
processor expects 32-bit instructions. The long answer is that you can use the operand-size prefix (0x66) 
and/or the address-size prefix (0x67) bytes before the opcode byte to tell the processor to treat the 
operands and/or address operand, respectively, as their 16-bit counterparts. So if you wanted to use mov 
ax,[1234h], it would be 66 67 8B 06 34 12 as both the register (operand) and address 
displacement (address) are 16-bit. As another example, mov dx,0FFFFh would be 66 BA FF FF, as it 
does not have a memory operand.

The second big difference is that the [mod], [reg] and [r/m] fields of the mod r/m byte have different 
behaviour. Well, [reg] isn't that different, as you can see:

[reg] [W]=0 [W]=1
000   al  eax
001   cl  ecx
010   dl  edx
011   bl  ebx 32-BIT MODE!
100   ah  esp
101   ch  ebp
110   dh  esi
111   bh  edi



However, the [mod] and [r/m] combinations are quite different...

[mod]
 00 – Treat [r/m] as memory address
 01 – Treat [r/m] + disp8 as memory address
 10 – Treat [r/m] + disp32 as memory address
 11 – Treat [r/m] as another [reg] field

[r/m]
 000 - eax
 001 – ecx
 010 - edx
 011 - ebx
 100 – SIB unless [mod] is 11, in which case esp
 101 – ebp unless [mod] is 00, in which case disp32
 110 - esi
 111 – edi

The following table shows the new combinations for the value of the operand:

[r/m]->
[mod]V

000 001 010 011 100 101 110 111

00 [eax] [ecx] [edx] [ebx] [SIB] [disp32] [esi] [edi]
01 [eax+

disp8]
[ecx+
disp8]

[edx+
disp8]

[ebx+
disp8]

[SIB+
disp8]

[ebp+
disp8]

[esi+
disp8]

[edi+
disp8]

10 [eax+
disp32]

[ecx+
disp32]

[edx+
disp32]

[ebx+
disp32]

[SIB+
disp32]

[ebp+
disp32]

[esi+
disp32]

[edi+
disp32]

11 eax ecx edx ebx esp ebp esi edi

Now what on earth is a SIB? It stands for Scale Index Byte, and is another byte that can come after the 
mod r/m byte. So the new 32-bit instruction format is:

The SIB lets you do things like mov eax,[esi+ecx*4], aka operands of the form:

 base+(index*scale)

While it's not used in our current program, it is still worth knowing about. The [scale] field is 2 bits wide 
and denotes a scale of:

[scale]
  00 - 1
  01 - 2
  10 - 4
  11 - 8

Opcode byte Mod r/m byte Immed byte/dwordDisplacement byte/dwordSIB

[scale][index][base]



[index] is 3 bits wide and can be the following:

[index]
 000 - eax
 001 - ecx
 010 - edx
 011 – ebx
 100 - 0
 101 - ebp
 110 - esi
 111 – edi

Lastly, [base] is also 3 bits wide and behaves almost exactly like the [r/m] field (note it depends on 
[mod]):

[base]
 000 - eax
 001 - ecx
 010 - edx
 011 - ebx
 100 - esp
 101 – ebp unless [mod] is 00, in which case disp32
 110 - esi
 111 – edi

Unfortunately if I put a table here summarising all this it would be huge, but the information above is all  
that is needed.

Examples
Time to get familiar with 32-bit instructions...

1) mov ebp,esp
Starting off easy here. Opcode to use can be either 89 or 8B, depending on the order of the operands; I'll 
use 89 for this. The [D] bit is 0, denoting [reg] as the source, so our [reg] = 100 (esp). To get ebp as 
the destination we'll need a [mod] of 11 and a [r/m] of 101. So our mod r/m byte is 11100101, or E5 
in hex, giving a result of 89 E5.

2) mov dword ptr [ebp+8],100h
The opcode to use for this is C7. It has the /0 thing so we've got our [reg] field there already. For [r/m] 
we could treat 8 as a disp32, but we might as well not since it's small enough to fit in a disp8. If we look 
in the table for [ebp+disp8] we find a [mod] of 01 and a [r/m] of 101, giving a mod r/m byte of 
01000101 = 45 hex. All we need to do now is append the disp8 (8) and imm32 (0x100) giving a final 
result of C7 45 08 00 10 00 00.

3) add eax,[esi+ecx*4]
SIB time! Don't worry, it's not that bad. First of all, the opcode we want is 03. The [D] bit's 1, because 
[reg] is the destination. So [reg] is going to be 000 for eax. The second operand is of the form 
[SIB], and a quick look at the table tells us that'll need [mod] = 00 and [r/m] = 100. So our mod r/m 
byte is 00000100 = 04 hex. For our SIB, esi is the base, ecx is the index and 4 is the scale. Thus 
[scale] = 10, [index] = 001 and [base] = 110, giving a final SIB of 10001110 = 8E hex. 
Put it all together and you get 03 04 8E.

4) mov edx,[ebp+eax*2]
The opcode for this is 8B. [reg], being the destination, is 010 for edx. The second operand is [SIB] 



again, so go to the table and use a [mod] of 00 and a [r/m] of 100. Then, for the SIB – wait a minute, we 
can't have a base of ebp because our [mod] is 00! Is it impossible then? Not at all, you just have to work 
around it. Instead of having the second operand as [SIB], have it as [SIB + disp8], which avoids a 
[mod] of 00, letting you use ebp as a base. The disp8 can just be 0, which may waste some CPU time for 
the addition but it is the only way to accomplish this, unfortunately. So our [mod] is 01, [reg] is 010, 
[r/m] is 100, [scale] is 01, [index] is 000, and our [base] is 101. Phew!

Putting it all together, including the disp8, gives 8B 54 45 00.

We're not ready to write the executable yet though, as first we must understand the actual format and the 
huge mass of headers at the beginning. Oh boy...

Structure of the Portable Executable
The basic structure is as follows:

MZ 'DOS' header + stub program
PE signature
COFF header
'Optional' header
Section table
Sections containing code/data/whatever

Firstly...

The DOS header and stub program
You thought you'd seen the last of DOS? Not so! As mentioned in the MZ exe chapter, the PE has a DOS MZ 
program at the start for compatibility reasons. Its header is very similar to the original DOS header used in 
the last chapter, but with these extra fields:

WORD reserved1[4];
WORD oem_id;
WORD oem_info;
WORD reserved2[10];
DWORD e_lfanew;

Just set them all to 0, except for e_lfanew which is very important because it holds the file offset of the 
PE signature.

There is another requirement: the relocPos field has to be 0x40 in a PE file. Let's grab the MZ 
executable from the previous chapter and modify it for the PE – we will have to modify the lastSize and 
hdrSize fields accordingly:

0000 :4D 5A 77 00 01 00 00 00 – 04 00 00 00 00 00 00 00
0010 :B8 00 00 00 00 00 00 00 – 40 00 00 00 00 00 00 00
0020 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0030 :00 00 00 00 00 00 00 00 – 00 00 00 00 XX XX XX XX
0040 :0E 1F B4 09 BA 0F 00 CD - 21 B4 4C B0 00 CD 21 54
0050 :68 69 73 20 70 72 6F 67 - 72 61 6D 20 63 61 6E 6E
0060 :6F 74 20 62 65 20 72 75 - 6E 20 69 6E 20 44 4F 53
0070 :20 6D 6F 64 65 2E 24

The modified and newly added data is shown in bold. Note that e_lfanew has been marked as unknown 
with X's for the moment. If the program is run under DOS then it'll skip the fields it doesn't know about 
because of the hdrSize member; but if run on Windows the PE loader will recognise the special value of 
relocPos and will proceed to load it as a PE.



The PE Signature
Coming right after the DOS stub is the PE signature, which is used by Windows to identify the file as an 
actual PE. It is a DWORD so it is 4 bytes wide, and has a value of 0x004550. This may seem fairly arbitrary 
but it appears in the file as 50 45 00 00, corresponding to the ASCII letters “PE” followed by two NULLs.

If I am correct then the PE signature must be aligned on a 16-byte boundary. I am not certain of this but it is  
a good idea to do so anyway, so we will :)

If we pad the rest of the DOS stub with zeroes we can put the PE signature after like so:

0000 :4D 5A 77 00 01 00 00 00 – 04 00 00 00 00 00 00 00
0010 :B8 00 00 00 00 00 00 00 – 40 00 00 00 00 00 00 00
0020 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0030 :00 00 00 00 00 00 00 00 – 00 00 00 00 80 00 00 00
0040 :0E 1F B4 09 BA 0F 00 CD - 21 B4 4C B0 00 CD 21 54
0050 :68 69 73 20 70 72 6F 67 - 72 61 6D 20 63 61 6E 6E
0060 :6F 74 20 62 65 20 72 75 - 6E 20 69 6E 20 44 4F 53
0070 :20 6D 6F 64 65 2E 24 00 – 00 00 00 00 00 00 00 00
0080 :50 45 00 00

Notice how we can now set the value of e_lfanew, which contains the file offset of the PE signature (in 
this case 0x80).

The COFF header
Right after the PE signature is the COFF header. If you're wondering, COFF stands for Common Object File 
Format and is used in other files like .OBJ's produced by compilers. Anyway, the COFF header has the 
following fields:

WORD machine;
WORD numberOfSections;
DWORD timeDateStamp;
DWORD pointerToSymbolTable;
DWORD numberOfSymbols;
WORD sizeOfOptionalHeader;
WORD characteristics;

machine is a number that represents the processor architecture (machine) the executable is meant for. A 
full list of values is available in the Windows headers (WinNT.h) or on the Internet, but since this entire 
text is for x86-compatible processors, we will use the value 0x14C, which represents an intel 386-
compatible processor.

numberOfSections is, unsurprisingly, the number of sections in the file. Sections will be covered later 
on, but they are basically areas of code or data that are mapped into memory one by one by the PE loader. 
We will have 3 sections here to keep things relatively simple, but some executables have many more.

timeDateStamp is the time and date the executable was created, in UTC format. This isn't essential and 
unless you really want to count up the number of seconds since January 1, 1970 to the present day (or just 
use a converter, but still...) we will leave this field as 0.

Once upon a time, pointerToSymbolTable and numberOfSymbols represented the file offset of 
the symbol table and the number of symbols, respectively. However the PE specification states that this 
information is now deprecated and they should be left as 0.

sizeOfOptionalHeader is the size, in bytes, of the Optional Header. The Optional Header comes next 



after the COFF header, and its full size is 0xE0 bytes.

characteristics describes properties of the executable as a whole. This can be things like if it has or 
lacks relocations, is a DLL, and so forth. DLL's are actually exe's for pretty much all intents and purposes, and 
they follow the PE format. However they differ in several areas, including this field. For our executable we 
shall have the following flags:
IMAGE_FILE_RELOCS_STRIPPED (0x01), since we don't use relocations here
IMAGE_FILE_EXECUTABLE_IMAGE (0x02), as this is required for the executable to actually run
IMAGE_FILE_32BIT_MACHINE (0x100), as the executable is made for a 32-bit machine and uses 
32-bit instructions

Binary OR'ing these flags together gives a final characteristics of 0x103. By the way, when we speak 
of an executable image, we refer to the executable as it appears loaded into memory.

So far, the nice, modern, non-DOS part of the file is:

0080 :50 45 00 00 4C 01 03 00 - 00 00 00 00 00 00 00 00
0090 :00 00 00 00 E0 00 03 01

The newly added COFF header is shown in bold.

Which brings us to the Optional Header! Prepare yourself, as I wasn't joking when I said its full size is 0xE0 
(124) bytes...

The Optional Header
The Optional Header's name is a little misleading as it's actually required as part of PE files. What gives it its 
name is that it is optional in .OBJ files; just not in EXE's or DLL's.

Before we begin it is important to know several things. Firstly, when an executable (referring to both EXEs 
and DLLs) is loaded, its sections are mapped into memory starting at a specific address. This address is 
known as the image base. The image base is actually a preferred address; if the loader is unable to do this, 
perhaps because the address is already occupied by something else, it can use a different address that is 
available (however this only tends to happen with DLLs since EXEs are usually there first). For this reason 
using absolute memory addresses to refer to things isn't guaranteed to work.

Instead a form of relative address is used by fields in the PE headers. This is known as an RVA – Relative 
Virtual Address. An RVA is simply an offset from the image base; that is, it's a memory address, but 
measured relative to the image base. As an example, suppose an EXE has an image base of 0x400000 (this 
is actually the default value). One of its sections says it wants to be loaded at RVA 0x1000. Since an RVA is 
just an offset from the image base, the loader will put the section at address 0x400000 + 0x1000 = 
0x401000 in memory.

Obviously this would also work if we replace the EXE with a DLL which can't be loaded at its preferred image 
base – say the loader managed to place it at 0x800000; the section would still be loaded at the correct 
address of 0x801000. This would not be the case if RVAs were not used, as the section would be trying to 
load itself into an already-occupied memory address.

So, ready for the Optional Header fields? Here they are:

WORD magic;
BYTE majorLinkerVersion;
BYTE minorLinkerVersion;
DWORD sizeOfCode;
DWORD sizeOfInitData;



DWORD sizeOfUninitData;
DWORD addrOfEntryPoint;
DWORD baseOfCode;
DWORD baseOfData;
DWORD imageBase;
DWORD sectionAlignment;
DWORD fileAlignment;
WORD majorOSversion;
WORD minorOSversion;
WORD majorImgVersion;
WORD minorImgVersion;
WORD majorSubsystemVersion;
WORD minorSubsystemversion;
DWORD reserved;
DWORD sizeOfImage;
DWORD sizeOfHeaders;
DWORD checksum;
WORD subsystem;
WORD dllCharacteristics;
DWORD sizeOfStackReserve;
DWORD sizeOfStackCommit;
DWORD sizeOfHeapReserve;
DWORD sizeOfHeapCommit;
DWORD loaderFlags;
DWORD numOfRvaAndSizes;
IMAGE_DATA_DIRECTORY dataDirectory[numOfRvaAndSizes];

magic is a magic number that is always 0x10B for 32-bit systems.

majorLinkerVersion and minorLinkerVersion are fairly self-explanatory. Combined, they 
represent the version of the linker used when linking the program. Since we're doing this the 'fun' way ('fun' 
being open to interpretation ;P) and not doing any compiling or linking, we can set this to 0.

sizeOfCode is the total size, in bytes, of the section(s) containing executable code (machine instructions). 
sizeOfInitData is the same but for those containing initialised data, and sizeOfUninitData for 
uninitialised data. Since we don't yet know the size of these sections (or even what exactly a section is) we 
will mark these with X's to show they are currently unknown.

addrOfEntryPoint is the RVA of the entry point in our program. The entry point is the address where 
execution should begin (ie whatever memory location the first instruction in our program corresponds to). 
We don't yet know this either, so it will be marked as such.

baseOfCode is the RVA of where our code section will be in memory. Since we don't know much about 
sections yet, this will be left unknown for now.

baseOfData is the same but for our first data section. This will also be left unknown and filled in later.

imageBase is the image base of the executable; aka its preferred load address. For our EXE we will use 
the default value of 0x400000. According to the specification, it has to be a multiple of 64k (0x10000).

sectionAlignment is the alignment of sections in memory. This means that the load addresses of the 
sections must be multiples of this number. On x86 compatible processors this can be no less than the page 
size (4 Kb), and to save space we will use this as it is the lowest value. So our sections' addresses can only be 
multiples of 4 kb, or 0x1000.



fileAlignment is the alignment of sections in the file. This must be a power of 2 between 512 (0x200) 
and 64k (0x10000). Since we want as small a file as is possible, we will choose 512 (0x200).

Of the next 6 fields, only 2 really matter: majorOSversion, which is the major version number of the 
required OS, and majorSubsystemVersion which is the same but for the subsystem (eg Windows GUI, 
Windows CUI, native etc). Values of 4 seem to work with these fields. The ImgVersion's are the versions 
of the executable, so they are defined by the creator. They, and the rest of the minor fields, can be 0.

reserved must be 0.

sizeOfImage is the virtual size of the executable image in memory. This means that it is the combined 
size of the headers and sections, as a multiple of sectionAlignment. We don't yet know enough 
information to complete this field, so we mark it as unknown with X's.

sizeOfHeaders is the size of all of the headers in the file (including the section table), rounded up to a 
multiple of fileAlignment. The sections themselves start at this offset in the file. However we don't yet 
know this currently, so we'll mark this with X's too.

checksum, like all good checksums, should be 0.

subsystem represents the subsystem the program uses; important values are 
IMAGE_SUBSYSTEM_NATIVE (0x01), used for things like device drivers, 
IMAGE_SUBSYSTEM_WINDOWS_GUI (0x02), used for graphical Windows applications, and 
IMAGE_SUBSYSTEM_WINDOWS_CUI (0x03), used for console-mode Windows applications. Since our 
program displays a message box, it's going to need IMAGE_SUBSYSTEM_WINDOWS_GUI, and so will 
have a value of 0x02.

dllCharacteristics is only used for DLLS, so we can use a value of 0 for this field.

sizeOfStackReserve and sizeOfStackCommit are how much memory to reserve for the stack 
and how much to actually commit, respectively. Basically the memory is reserved for the stack but only a 
certain amount is made available. If this memory runs out then the reserve can be made available one page 
(4k) at a time until it runs out too. We will have a reserve of 0x10000 (16 pages) and a commit of 0x1000 
(1 page) for our program.

sizeOfHeapReserve and sizeOfHeapCommit follow the same principle, except that it is for the size 
of the heap instead. For simplicity we will use the same respective values here as for the Stack fields.

loaderFlags is a reserved field and needs to be 0.

numOfRvaAndSizes is the number of entries in the Data Directory, and we will use its full value which is 
16 (0x10).

Finally, dataDirectory is an array of IMAGE_DATA_DIRECTORY's which provides information on 
special data structures used by Windows. An IMAGE_DATA_DIRECTORY is an 8-byte structure composed 
of:

DWORD virtualAddress;
DWORD size;

virtualAddress is the RVA of the data structure in memory. size is the size, in bytes, of the relevant 
data.



Each entry of the Data Directory has a specific data structure associated with it. Of use to us are members 
[1] and [12], which are IMAGE_DIRECTORY_ENTRY_IMPORT and 
IMAGE_DIRECTORY_ENTRY_IAT. The first one holds information about imported functions from DLLs, 
in our case MessageBoxA from user32.dll and ExitProcess from kernel32.dll. The second is 
the Import Address table, or IAT. This is where the addresses of said functions are placed for our program to 
use. We will go into much more detail on these later (heck, we have to write them) but for now we will 
mark both entries completely unknown with X's. The rest of the entries are 0.

In summary, here is our PE file from offset 0x80 so far, with the fields of the Optional Header shown in 
bold, and the Data Directory part in blue:

0080 :50 45 00 00 4C 01 03 00 - 00 00 00 00 00 00 00 00
0090 :00 00 00 00 E0 00 03 01 – 0B 01 00 00 XX XX XX XX
00A0 :XX XX XX XX XX XX XX XX – XX XX XX XX XX XX XX XX
00B0 :XX XX XX XX 00 00 40 00 – 00 10 00 00 00 02 00 00
00C0 :04 00 00 00 00 00 00 00 – 04 00 00 00 00 00 00 00
00D0 :XX XX XX XX XX XX XX XX – 00 00 00 00 02 00 00 00
00E0 :00 00 01 00 00 10 00 00 – 00 00 01 00 00 10 00 00
00F0 :00 00 00 00 10 00 00 00 – 00 00 00 00 00 00 00 00
0100 :XX XX XX XX XX XX XX XX – 00 00 00 00 00 00 00 00
0110 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0120 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0130 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0140 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0150 :00 00 00 00 00 00 00 00 – XX XX XX XX XX XX XX XX
0160 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0170 :00 00 00 00 00 00 00 00

Which finally brings us to the Section Table.

The Section Table
As mentioned, a section is just a chunk of code or data in the executable. They're organised into sections to 
avoid having code and data all over the place and also because individual sections can have different 
characteristics. So, for example, a code section could be marked as executable (obviously) and readable, but 
perhaps not writeable for more security. Or perhaps, a data section could be marked as non-executable for 
the same reason. Sections, as mentioned, have to be aligned in both memory and in the file. In memory 
they are aligned to the value of sectionAlignment in the Optional Header, and in the file / on disk they 
are aligned to fileAlignment. The number of sections in the file is given near the start of the COFF 
header, as the numberOfSections field we set to 3.

The section table is the final part of the header structure and holds information about the different sections 
in the file. It is composed of section headers, with one header per section. The format of a section header is 
as follows:

BYTE name[8];
DWORD virtualSize;
DWORD virtualAddress;
DWORD sizeOfRawData;
DWORD pointerToRawData;
DWORD pointerToRelocations;
DWORD pointerToLineNumbers;
WORD numberOfRelocations;
WORD numberOfLineNumbers;
DWORD characteristics;



name is an ASCII string with a maximum length of 8 characters. It usually begins with a full stop and is 
usually one of these:

.text – used for the executable code section

.data – used for initialised, writeable data

.rdata – used for read-only data, such as string literals

.idata – Import Data; used for the Import and Import Address Table.

.edata – Export Data; used for exports (mainly used by DLLs)

.bss – Uninitialised data

In reality, however, you can actually call them whatever you want. They are really only meant for humans to 
read. If the name is less than 8 characters long, the rest of this field is padded with zeroes.

virtualSize is the size of the actual data. This is not a rounded or aligned value, unlike 
sizeOfRawData. Uninitialised data sections do not need section data, but in this case this field will be 
the amount of data in the section once loaded.

virtualAddress is the RVA of the section in memory. It must be a multiple of sectionAlignment, 
in this case a multiple of 0x1000.

sizeOfRawData is the size of the section data; the only problem is, it must be a multiple of 
fileAlignment, in our case a multiple of 0x200.

pointerToRawData is the file offset of the section data in the file. This must also be a multiple of 
fileAlignment, giving an important restriction on the sections in our file: they must all start at 
multiples of 512 bytes. Unfortunately with such a small assembly program there will be a lot of empty space 
in the file, but this is one of the things you have to live with :S

pointerToRelocations is the file offset of relocation data for the section. Relocations are not needed 
in our EXE because they are pretty much always loaded at their preferred image base, so for all sections this 
field will be 0, denoting no relocations.

pointerToLineNumbers is very much like pointerToSymbolTable in the COFF header; it's 
deprecated and so should be 0.

numberOfRelocations and numberOfLineNumbers are self explanatory and will both be 0 for the 
section headers in our file.

Now, characteristics is the really important field here. It is a combination of flags denoting specific 
properties the section should have once loaded / mapped into memory. Here are some common values:

IMAGE_SCN_CNT_CODE (0x20) – Section contains machine instructions
IMAGE_SCN_CNT_INITIALISED_DATA (0x40) – Section contains initialised data
IMAGE_SCN_CNT_UNINITIALISED_DATA (0x80) – Section contains uninitialised data
IMAGE_SCN_MEM_EXECUTE (0x20000000) – Section is executable
IMAGE_SCN_MEM_READ (0x40000000) – Section is readable (I cannot think of why one would omit 
this characteristic...)
IMAGE_SCN_MEM_WRITE (0x80000000) – Section is writeable (aka not read-only)

According to the specification, the sections and their headers must come in ascending order of 
virtualAddress.



Our section table
First of all, let's decide what sections we're going to need. Obviously we're going to need a code section for 
our machine instructions (.text). We'll also need a read-only data section (.rdata) to hold our string 
literals (although for this program it's not really that important whether or not it's read-only. Heck, we could 
even store the strings in the code section if we wanted, so long as we make sure they're not accidentally 
executed). Finally, we'll need a section for our import info and IAT (.idata). Since the only other thing we 
currently know about the sections are their characteristics, we will have to leave several other fields 
unknown until we have the sections themselves.

First of all, the .text section will have characteristics IMAGE_SCN_CNT_CODE | 
IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_MEM_READ = 0x60000020.

Next, the .rdata section will have characteristics IMAGE_SCN_CNT_INITIALISED_DATA | 
IMAGE_SCN_MEM_READ = 0x40000040.

And the .idata section will have characteristics IMAGE_SCN_CNT_INITIALISED_DATA | 
IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE = 0xC0000040.

So our file from offset 0x170 with the section table in bold looks like this:

0170 :00 00 00 00 00 00 00 00 – 2E 74 65 78 74 00 00 00
0180 :XX XX XX XX XX XX XX XX – XX XX XX XX XX XX XX XX
0190 :00 00 00 00 00 00 00 00 – 00 00 00 00 20 00 00 60
01A0 :2E 72 64 61 74 61 00 00 – XX XX XX XX XX XX XX XX
01B0 :XX XX XX XX XX XX XX XX – 00 00 00 00 00 00 00 00
01C0 :00 00 00 00 40 00 00 40 – 2E 69 64 61 74 61 00 00
01D0 :XX XX XX XX XX XX XX XX – XX XX XX XX XX XX XX XX
01E0 :00 00 00 00 00 00 00 00 – 00 00 00 00 40 00 00 C0

The actual sections come right after the section table. However, remember that they must be aligned 
according to fileAlignment. Luckily the next multiple of 0x200 is just round the corner (16 bytes 
away) so all we have to do is pad it with zeroes:

01B0 :XX XX XX XX XX XX XX XX – 00 00 00 00 00 00 00 00
01C0 :00 00 00 00 40 00 00 40 – 2E 69 64 61 74 61 00 00
01D0 :XX XX XX XX XX XX XX XX – XX XX XX XX XX XX XX XX
01E0 :00 00 00 00 00 00 00 00 – 00 00 00 00 40 00 00 C0
01F0 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0200 :

Great! But before we start working on the first section, we should realise that the headers are now finished! 
This means we can go back to the Optional Header and finally fill in the sizeOfHeaders field. The 
sizeOfHeaders field is now 0x200:

00D0 :XX XX XX XX 00 02 00 00 – 00 00 00 00 02 00 00 00

We can now work on the first section.



The .text section
For this we will need to translate the assembly instructions from our program. They are repeated here:

push MB_ICONINFORMATION ; 0x40
push OFFSET msgTitle
push OFFSET msg
push NULL ;0
call MessageBoxA
push 0
call ExitProcess

If you did the conversion correctly you should have ended up with (the equivalent of) the following machine 
code:

6A 40 68 XX XX XX XX 68 - XX XX XX XX 6A 00 FF 15
XX XX XX XX 6A 00 FF 15 – XX XX XX XX

Obviously we don't yet know the OFFSET's or function addresses, so we leave them unknown for now.

And that's pretty much it for our code section...it's a small program, so it's a small code section. If we count 
up the bytes we get a total of 0x1C; this value goes in the relevant section header's virtualSize field.

Since the next section will also have to be file-aligned, the next available offset would be 0x400 which 
means we will have to pad the entire rest of the section on-disk with zeroes. This is also true with the other 
sections, since their size also needs to be a multiple of fileAlignment.

0200 :6A 40 68 XX XX XX XX 68 - XX XX XX XX 6A 00 FF 15
0210 :XX XX XX XX 6A 00 FF 15 – XX XX XX XX 00 00 00 00
0230 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00

<lots and lots of 00's>

03E0 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
03F0 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0400 :

We can now also update the .text section header's sizeOfRawData and pointerToRawData fields 
with 0x200 for both:

0170 :00 00 00 00 00 00 00 00 – 2E 74 65 78 74 00 00 00
0180 :1C 00 00 00 XX XX XX XX – 00 02 00 00 00 02 00 00
0190 :00 00 00 00 00 00 00 00 – 00 00 00 00 20 00 00 60



The .rdata section
This section is even smaller. All we have to do is put in the string literals, converted from ASCII to hex:

0400 :48 65 6C 6C 6F 2C 20 57 – 6F 72 6C 64 21 00 4D 65
0410 :73 73 61 67 65 00

The virtualSize of this section is 0x16 and the pointerToRawData is obviously 0x400. The 
sizeOfRawData is also 0x200 once we pad up to offset 0x600. We should update the .rdata section 
header with these values:

01A0 :2E 72 64 61 74 61 00 00 – 16 00 00 00 XX XX XX XX
01B0 :00 02 00 00 00 04 00 00 – 00 00 00 00 00 00 00 00
01C0 :00 00 00 00 40 00 00 40 – 2E 69 64 61 74 61 00 00

The .idata section
Remember the Import data directory and IAT from the  Optional Header? In the file, they are located here. 
Here's how it works: for each DLL the program requires, there is an IMAGE_IMPORT_DESCRIPTOR 
structure describing it and the functions to import from it. They form an array of 
IMAGE_IMPORT_DESCRIPTOR's, terminated by a descriptor with all fields having a value of 0. The 
IMAGE_IMPORT_DESCRIPTOR is as follows:

DWORD originalFirstThunk;
DWORD timeDateStamp;
DWORD forwarderChain;
DWORD name;
DWORD firstThunk;

I'll break the tradition of going through the fields in order, because the first and the last are of great 
importance.

timeDateStamp is another UTC-format time / date value that isn't really important and can be left at 0.

forwarderChain is used in an advanced dynamic linking topic which is currently beyond the scope of 
this text, so it will be 0.

name is an RVA to a null-terminated ASCII string which is the name of the DLL the descriptor is referring to 
(.dll extension included in the string).

Now, for every function (technically not necessarily a function but it will do for our purposes) that is 
exported by the DLL there is an IMAGE_IMPORT_BY_NAME structure, which is defined:

WORD hint;
BYTE name[1];

hint isn't needed and is an index into the DLL's export table. This will be 0 for instances of this structure in 
this program. The field of interest is name which isn't actually an array of length 1. name is the name of the 
function in question, and is a null-terminated ASCII string.

For every DLL there is an array of DWORDs (the actual name is IMAGE_THUNK_DATA), each holding the 
RVA of an IMAGE_IMPORT_BY_NAME for an imported function. The array is terminated by a null entry (a 
DWORD of value 0). The originalFirstThunk member of the IMAGE_IMPORT_DESCRIPTOR holds 
the RVA of this array.

There is actually another array of IMAGE_THUNK_DATA's that is identical to the first. The firstThunk 



member holds the RVA of this array. Here's a diagram of the whole thing, to help visualise it:

So why on earth is there another array that does exactly the same thing as the first? Well, the combined 
IMAGE_THUNK_DATA arrays pointed to by the firstThunks of all of the 
IMAGE_IMPORT_DESCRIPTOR's makes up the Import Address Table! When the executable is loaded, 
Windows goes through the Import Table containing the import descriptors. It loads the DLLs one by one into 
the process address space by looking at the name fields, and for each descriptor looks at the function 
names pointed to by firstThunk's IMAGE_THUNK_DATA array. It then looks for the functions in the 
relevant DLL and replaces the IMAGE_THUNK_DATA's with the addresses of those functions, ready for 
the program's code to call. However it's always a good idea to have the RVAs to the function names still 
available, and the originalFirstThunk's thunk data array achieves this purpose, just in case anything 
goes wrong. This is what the first DLL's import descriptor from the above diagram will look like once 
everything's ready:

Our Import Table
It may seem confusing at first, but all it takes is some getting used to. In our application we only have 2 
DLLs, kernel32 and user32. From kernel32 we only import one function, ExitProcess. We also 
only import one function from user32, MessageBoxA. Let's write our IMAGE_IMPORT_DESCRIPTOR 
array first to begin our .idata section:

0600 :XX XX XX XX 00 00 00 00 – 00 00 00 00 XX XX XX XX
0610 :XX XX XX XX XX XX XX XX - 00 00 00 00 00 00 00 00
0620 :XX XX XX XX XX XX XX XX – 00 00 00 00 00 00 00 00
0630 :00 00 00 00 00 00 00 00 – 00 00 00 00

IMAGE_IMPORT_DESCRIPTOR
originalFirstThunk

timeDateStamp
forwarderChain

name
firstThunk

IMAGE_IMPORT_DESCRIPTOR
originalFirstThunk

timeDateStamp
forwarderChain

name
firstThunk

IMAGE_IMPORT_DESCRIPTOR
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

IMAGE_THUNK_DATA
IMAGE_THUNK_DATA
IMAGE_THUNK_DATA

00 00 00 00

IMAGE_THUNK_DATA
IMAGE_THUNK_DATA
IMAGE_THUNK_DATA

00 00 00 00

IMAGE_THUNK_DATA
IMAGE_THUNK_DATA

00 00 00 00
IMAGE_THUNK_DATA
IMAGE_THUNK_DATA

00 00 00 00

00 00
“SomeFunction1”

00 00
“SomeFunction2”

00 00
“SomeFunction3”

00 00
“SomeOtherFunction1”

00 00
“SomeOtherFunction2”

“SomeDll.dll”

“SomeOtherDll.dll”

IMAGE_IMPORT_DESCRIPTOR
originalFirstThunk

timeDateStamp
forwarderChain

name
firstThunk

IMAGE_THUNK_DATA
IMAGE_THUNK_DATA
IMAGE_THUNK_DATA

00 00 00 00

Address of SomeFunction1
Address of SomeFunction2
Address of SomeFunction3

00 00 00 00

00 00
“SomeFunction1”

00 00
“SomeFunction2”

00 00
“SomeFunction3”

“SomeDll.dll”



Unfortunately we can't add the details till we're done with the array. So now that we've written the 
IMAGE_IMPORT_DESCRIPTOR array, we need to reserve space for the IMAGE_THUNK_DATA arrays. 
How many members will we need? Well, there are two arrays per DLL, each with one 
IMAGE_THUNK_DATA per function from that DLL. Since we only import one function from each DLL, all 
four arrays will only contain one IMAGE_THUNK_DATA and one null entry:

0600 :XX XX XX XX 00 00 00 00 – 00 00 00 00 XX XX XX XX
0610 :XX XX XX XX XX XX XX XX - 00 00 00 00 00 00 00 00
0620 :XX XX XX XX XX XX XX XX – 00 00 00 00 00 00 00 00
0630 :00 00 00 00 00 00 00 00 – 00 00 00 00 XX XX XX XX
0640 :00 00 00 00 XX XX XX XX – 00 00 00 00 XX XX XX XX
0650 :00 00 00 00 XX XX XX XX – 00 00 00 00

Next we add the DLL names:

0600 :XX XX XX XX 00 00 00 00 – 00 00 00 00 XX XX XX XX
0610 :XX XX XX XX XX XX XX XX - 00 00 00 00 00 00 00 00
0620 :XX XX XX XX XX XX XX XX – 00 00 00 00 00 00 00 00
0630 :00 00 00 00 00 00 00 00 – 00 00 00 00 XX XX XX XX
0640 :00 00 00 00 XX XX XX XX – 00 00 00 00 XX XX XX XX
0650 :00 00 00 00 XX XX XX XX – 00 00 00 00 6B 65 72 6E
0660 :65 6C 33 32 2E 64 6C 6C – 00 75 73 65 72 33 32 2E
0670 :64 6C 6C 00

And finally, we add the IMAGE_IMPORT_BY_NAME's:

0650 :00 00 00 00 XX XX XX XX – 00 00 00 00 6B 65 72 6E
0660 :65 6C 33 32 2E 64 6C 6C – 00 75 73 65 72 33 32 2E
0670 :64 6C 6C 00 00 00 45 78 – 69 74 50 72 6F 63 65 73
0680 :73 00 00 00 4D 65 73 73 - 61 67 65 42 6F 78 41 00

So we should now be ready to fill everything in. But wait! The things we need to fill in are RVAs  - and we 
don't yet know the RVA of this section, or any others! Better determine them now...

First of all, the sections need RVAs compliant with sectionAlignment. We can afford to have the 
sections the minimum distance of 1 page (0x1000 bytes) apart, as the sections themselves aren't nearly 
this big. So, .text can be at RVA 0x1000, .rdata at 0x2000 and .idata at 0x3000. Remember that 
the sections and their headers have to be in ascending order of RVA. We also know that .idata's 
sizeOfRawData is 0x200 (yes, we need to pad it with zeroes) and its file offset is 0x600. We can also 
see that its virtualSize will be 0x90. Let's update the section headers to reflect all this:

0170 :00 00 00 00 00 00 00 00 – 2E 74 65 78 74 00 00 00
0180 :1C 00 00 00 00 10 00 00 – 00 02 00 00 00 02 00 00
0190 :00 00 00 00 00 00 00 00 – 00 00 00 00 20 00 00 60
01A0 :2E 72 64 61 74 61 00 00 – 16 00 00 00 00 20 00 00
01B0 :00 02 00 00 00 04 00 00 – 00 00 00 00 00 00 00 00
01C0 :00 00 00 00 40 00 00 40 – 2E 69 64 61 74 61 00 00
01D0 :90 00 00 00 00 30 00 00 – 00 02 00 00 00 06 00 00
01E0 :00 00 00 00 00 00 00 00 – 00 00 00 00 40 00 00 C0

The section table is now finished! Now we know the RVA of this section we can fill in the missing fields. Let's  
start with those in the Import Descriptors:



0600 :3C 30 00 00 00 00 00 00 – 00 00 00 00 5C 30 00 00
0610 :4C 30 00 00 44 30 00 00 - 00 00 00 00 00 00 00 00
0620 :69 30 00 00 54 30 00 00 – 00 00 00 00 00 00 00 00
0630 :00 00 00 00 00 00 00 00 – 00 00 00 00 XX XX XX XX
0640 :00 00 00 00 XX XX XX XX – 00 00 00 00 XX XX XX XX
0650 :00 00 00 00 XX XX XX XX – 00 00 00 00 6B 65 72 6E
0660 :65 6C 33 32 2E 64 6C 6C – 00 75 73 65 72 33 32 2E
0670 :64 6C 6C 00 00 00 45 78 – 69 74 50 72 6F 63 65 73
0680 :73 00 00 00 4D 65 73 73 - 61 67 65 42 6F 78 41 00

For clarity the Import Descriptor for kernel32.dll has been highlighted in yellow and that of 
user32.dll in green.

Since file offset 0x600 now corresponds to RVA 0x3000, all one needs to do is find the offset from 
0x600 and add it to 0x3000 to get the RVAs of the various fields. Next we give the 
IMAGE_THUNK_DATA's the RVAs to the function names:

0600 :3C 30 00 00 00 00 00 00 – 00 00 00 00 5C 30 00 00
0610 :4C 30 00 00 44 30 00 00 - 00 00 00 00 00 00 00 00
0620 :69 30 00 00 54 30 00 00 – 00 00 00 00 00 00 00 00
0630 :00 00 00 00 00 00 00 00 – 00 00 00 00 74 30 00 00
0640 :00 00 00 00 82 30 00 00 – 00 00 00 00 74 30 00 00
0650 :00 00 00 00 82 30 00 00 – 00 00 00 00 6B 65 72 6E
0660 :65 6C 33 32 2E 64 6C 6C – 00 75 73 65 72 33 32 2E
0670 :64 6C 6C 00 00 00 45 78 – 69 74 50 72 6F 63 65 73
0680 :73 00 00 00 4D 65 73 73 - 61 67 65 42 6F 78 41 00

Here the arrays pointed to by the originalFirstThunk's have been highlighted in red, and those 
pointed to by the firstThunk's in blue. They, namely the firstThunk arrays, have been grouped 
together in this way because the firstThunk arrays actually become the Import Address Table. The IAT 
needs to be in one solid, contiguous block which wouldn't be the case if we had grouped them by DLL 
instead.

And that's the final section finished! Let's go all the way back to the Data Directory in the Optional Header 
and update it. The size of the Import Table (the array of IMAGE_IMPORT_DESCRIPTOR's, including the 
null entry) is 0x3C; its RVA is 0x3000. Let's fill in size and virtualAddress with these values:

0100 :00 30 00 00 3C 00 00 00 – 00 00 00 00 00 00 00 00

The IAT entry also needs to be filled in. The virtualAddress or RVA of the IAT is 0x304C and its size 
is 0x10.

0150 :00 00 00 00 00 00 00 00 – 4C 30 00 00 10 00 00 00

Fixing up .text
Now the .idata and .rdata sections are done, and we have their RVAs, we can fix up all those 
unknowns in our .text section. Let's have another look at it:

0200 :6A 40 68 XX XX XX XX 68 - XX XX XX XX 6A 00 FF 15
0210 :XX XX XX XX 6A 00 FF 15 – XX XX XX XX 00 00 00 00

The first two unknowns are the addresses of the string literals. The next two are the addresses of the 
function addresses (they are indirect calls). However, because the functions' parameters have to be 
addresses and the CPU expects an address for function calls, none of these are RVAs – they are hardcoded 



addresses. So, once loaded into memory, where will our string literals be? Well, the .rdata section in 
which they reside is located at RVA 0x2000 – so if our executable is loaded at its preferred image base of 
0x400000 (which it will be because it is an EXE and not a DLL), .rdata will be located at 0x400000 + 
0x2000 = 0x402000.

In the .rdata section we put “Hello, World!”,0 first and “Message”,0 afterwards. If we look 
back at this section we find the first at the very start of the section and the second at offset 0x0E from the 
start of the section. So once loaded into memory, “Hello, World!” will be located at 0x402000 and 
“Message” at 0x40200E. Substituting these values (remember, in our code we push the address of 
“message” before “Hello, World!”):

0200 :6A 40 68 0E 20 40 00 68 – 00 20 40 00 6A 00 FF 15

This leaves only the functions to fix up. Once the executable is loaded, the address of MessageBoxA will 
be at 0x403054 (the second non-null entry in the IAT) and the address of ExitProcess will be at 
0x40304C. Substituting these values, we get:

0200 :6A 40 68 0E 20 40 00 68 – 00 20 40 00 6A 00 FF 15
0210 :54 30 40 00 6A 00 FF 15 – 4C 30 40 00 00 00 00 00

Of course, if this was a DLL then there would be no guarantee that the executable would be loaded at 
0x400000, so we would need to add in a new section with a relocation table.

And that is it for the .text section. We are almost done! First, we need to fill out the sizeOfImage 
member in the Optional Header. sizeOfImage is the combined size of all headers and sections in 
memory, and is used by the OS to know how much memory in the process' address space to reserve for the 
executable image. We know our sections combined will take up 3 pages (0x3000 bytes) but the headers 
are only 0x200 bytes long. However sizeOfImage must be a multiple of sectionAlignment so we 
round this up to 0x1000, giving a final value of 0x3000 + 0x1000 = 0x4000.

00D0 :00 40 00 00 00 02 00 00 – 00 00 00 00 02 00 00 00

Next, we must fill in sizeOfCode, sizeOfInitData and sizeOfUninitData. We only have one 
code section which is 0x200 bytes in size. We have two sections of initialised data, each being the same 
size as the code section, so their combined size is 0x400 bytes. We don't have any uninitialised data 
sections, so this value is 0.

0090 :00 00 00 00 E0 00 03 01 – 0B 01 00 00 00 02 00 00
00A0 :00 04 00 00 00 00 00 00 – XX XX XX XX XX XX XX XX
00B0 :XX XX XX XX 00 00 40 00 – 00 10 00 00 00 02 00 00

The next missing field is addrOfEntryPoint, the RVA of the entry point of our program. Our code 
section is at RVA 0x1000 and execution begins right at the very start, so our addrOfEntryPoint is 
0x1000:

00A0 :00 04 00 00 00 00 00 00 – 00 10 00 00 XX XX XX XX
The last two missing fields are baseOfCode and baseOfData, the RVAs of our (first) code and data 
sections. Our first code section is .text with an RVA of 0x1000, and our first data section is .rdata 
with an RVA of 0x2000.

00A0 :00 04 00 00 00 00 00 00 – 00 10 00 00 00 10 00 00
00B0 :00 20 00 00 00 00 40 00 – 00 10 00 00 00 02 00 00



FINALLY our long and gruelling journey has come to a close – the PE file is ready to run (after conversion 
from hex of course). Here is the complete hex code (minus masses of zeroes) to check against:

0000 :4D 5A 77 00 01 00 00 00 – 04 00 00 00 00 00 00 00
0010 :B8 00 00 00 00 00 00 00 – 40 00 00 00 00 00 00 00
0020 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0030 :00 00 00 00 00 00 00 00 – 00 00 00 00 80 00 00 00 DOS HEADER + STUB PROGRAM
0040 :0E 1F B4 09 BA 0F 00 CD - 21 B4 4C B0 00 CD 21 54
0050 :68 69 73 20 70 72 6F 67 - 72 61 6D 20 63 61 6E 6E
0060 :6F 74 20 62 65 20 72 75 - 6E 20 69 6E 20 44 4F 53
0070 :20 6D 6F 64 65 2E 24 00 – 00 00 00 00 00 00 00 00
0080 :50 45 00 00 4C 01 03 00 - 00 00 00 00 00 00 00 00 PE SIGNATURE + COFF HEADER
0090 :00 00 00 00 E0 00 03 01 – 0B 01 00 00 00 02 00 00
00A0 :00 04 00 00 00 00 00 00 – 00 10 00 00 00 10 00 00
00B0 :00 20 00 00 00 00 40 00 – 00 10 00 00 00 02 00 00 OPTIONAL HEADER
00C0 :04 00 00 00 00 00 00 00 – 04 00 00 00 00 00 00 00
00D0 :00 40 00 00 00 02 00 00 – 00 00 00 00 02 00 00 00
00E0 :00 00 01 00 00 10 00 00 – 00 00 01 00 00 10 00 00
00F0 :00 00 00 00 10 00 00 00 – 00 00 00 00 00 00 00 00
0100 :00 30 00 00 3C 00 00 00 – 00 00 00 00 00 00 00 00
0110 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0120 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0130 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00 DATA DIRECTORY
0140 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0150 :00 00 00 00 00 00 00 00 – 4C 30 00 00 10 00 00 00
0160 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0170 :00 00 00 00 00 00 00 00 – 2E 74 65 78 74 00 00 00
0180 :1C 00 00 00 00 10 00 00 – 00 02 00 00 00 02 00 00
0190 :00 00 00 00 00 00 00 00 – 00 00 00 00 20 00 00 60
01A0 :2E 72 64 61 74 61 00 00 – 16 00 00 00 00 20 00 00
01B0 :00 02 00 00 00 04 00 00 – 00 00 00 00 00 00 00 00
01C0 :00 00 00 00 40 00 00 40 – 2E 69 64 61 74 61 00 00 SECTION TABLE
01D0 :90 00 00 00 00 30 00 00 – 00 02 00 00 00 06 00 00
01E0 :00 00 00 00 00 00 00 00 – 00 00 00 00 40 00 00 C0
01F0 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0200 :6A 40 68 0E 20 40 00 68 – 00 20 40 00 6A 00 FF 15
0210 :54 30 40 00 6A 00 FF 15 – 4C 30 40 00 00 00 00 00 .text: CODE SECTION
0220 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00

<lots and lots of 00's>

03F0 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0400 :48 65 6C 6C 6F 2C 20 57 – 6F 72 6C 64 21 00 4D 65
0410 :73 73 61 67 65 00 00 00 - 00 00 00 00 00 00 00 00 .rdata: READ-ONLY DATA SECTION
0420 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00

<lots and lots of 00's>

05F0 :00 00 00 00 00 00 00 00 – 00 00 00 00 00 00 00 00
0600 :3C 30 00 00 00 00 00 00 – 00 00 00 00 5C 30 00 00
0610 :4C 30 00 00 44 30 00 00 - 00 00 00 00 00 00 00 00
0620 :69 30 00 00 54 30 00 00 – 00 00 00 00 00 00 00 00
0630 :00 00 00 00 00 00 00 00 – 00 00 00 00 74 30 00 00
0640 :00 00 00 00 82 30 00 00 – 00 00 00 00 74 30 00 00 .idata: IMPORT DATA SECTION
0650 :00 00 00 00 82 30 00 00 – 00 00 00 00 6B 65 72 6E
0660 :65 6C 33 32 2E 64 6C 6C – 00 75 73 65 72 33 32 2E
0670 :64 6C 6C 00 00 00 45 78 – 69 74 50 72 6F 63 65 73
0680 :73 00 00 00 4D 65 73 73 - 61 67 65 42 6F 78 41 00

<lots and lots of 00's, till offset 0x800>



If you run the resulting program, you should get this:

But depending on the circumstances, you may get this instead:

Antivirus programs go crazy over small executables, and we've created the smallest executable possible 
given the section and file alignment limits (in theory, but it's possible to make even smaller ones...). 
However all ours does is display a message box and exit, so it's a false alarm.


